
 
NOVA  
University of Newcastle Research Online 

nova.newcastle.edu.au 
 

 
Carricarte-Naranjo, C.; Cornforth, D. J.; Sanchez-Rodriguez, L. M.; Brown, M.; Estévez, 
M.; Machado, A.; Jelinek, H. F. “Rényi and permutation entropy analysis for assessment 
of cardiac autonomic neuropathy” Published in EMBEC & NBC 2017: Joint Conference of 
the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-
Baltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, 
Finland, Vol. 65, Tampere, Finland 11-15 June, p. 755-758, (2018). 

Available from: http://dx.doi.org/10.1007/978-981-10-5122-7_189  

 
 

 
This is a post-peer-review, pre-copyedit version of an article published in the IFMBE 
Proceedings. The final authenticated version is available online at: https://doi.org/1007/978-
981-10-5122-7_189.  
 

Accessed from: http://hdl.handle.net/1959.13/1410287  
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1007/978-981-10-5122-7_189
https://doi.org/1007/978-981-10-5122-7_189
https://doi.org/1007/978-981-10-5122-7_189
http://hdl.handle.net/1959.13/1410287


 1 

Carricarte_EMBEC2017_Revised.docx 

Rényi and permutation entropy analysis for assessment of cardiac autonomic 
neuropathy 

C. Carricarte-Naranjo1, D.J. Cornforth2, L.M. Sanchez-Rodriguez3, M. Brown4, M. Estévez5, A. 
Machado1 and H.F. Jelinek6 

1Faculty of Biology, University of Havana, Havana, Cuba 
2Applied Informatics Research Group, University of Newcastle, Newcastle, NSW, Australia 

3Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada 
4Cuban Neuroscience Center, Havana, Cuba 

5Institute of Neurology and Neurosurgery, Havana, Cuba 
 6School of Community Health, Charles Sturt University, Albury, NSW, Australia  

Abstract— Cardiac autonomic neuropathy (CAN) is a com-
plication of diabetes with a long asymptomatic phase that is as-
sociated with high morbidity and mortality. Early identification 
of CAN in Type 1 diabetes mellitus (T1DM) may be possible us-
ing heart rate variability (HRV). However, the power of HRV 
analysis to identify CAN depends on the selection of suitable fea-
tures that provide reliable information regarding cardiac auto-
nomic regulation. Our aim was to compare the performance of 
Rényi entropy (RE) and permutation entropy (PE) for identifi-
cation of T1DM patients with CAN. RE and PE measures from 
235 data points and 5 min of cardiac interbeat interval (RR) se-
quences were analysed in 18 T1DM patients without CAN, 14 
T1DM patients with CAN, and healthy controls matched for age 
and sex. RE was calculated for different orders α (-5, 5), pattern 
lengths λ (2, 4, 8), and tolerance σ. For PE analysis λ was set to 
(3-4) and time delays τ to (1-10). A forward stepwise discrimi-
nant analysis was carried out for estimating the classification 
functions. Accuracy was estimated following a K-fold cross-val-
idation (k = 14). RE calculated for RR sequences of λ = 2, α > 0 
showed the best performance for differentiating T1DM patients 
with CAN (p < 0.0001). PE measures showed better perfor-
mance with ordinal patterns and τ = 4, 5 and 7 for differentiat-
ing patients with CAN. RE and PE provide complementary in-
formation achieving 100% classification accuracy (p < 0.0001 
and p < 0.001, respectively). This approach might be promising 
as a sensitive and specific tool for CAN diagnosis in T1DM. 

Keywords— Rényi entropy, permutation entropy, ordinal 
patterns, heart rate variability, cardiac autonomic neuropathy 

I. INTRODUCTION 

Autonomic neuropathy is a common and major chronic 
complication of diabetes mellitus associated with high mor-
bidity and mortality. Although cardiac autonomic neuropathy 
(CAN) is the most clinically relevant form of diabetic auto-
nomic neuropathy [1], it is also one of the most overlooked 
complications of diabetes due to a long asymptomatic phase, 
thus remaining undiagnosed and undertreated [2, 3].  

Identification of early signs of reduced heart rate variabil-
ity (HRV) associated with CAN [2] requires selecting suita-
ble HRV features that provide reliable information about the 
underlying autonomic nervous system control mechanisms. 

HRV is traditionally quantified using linear measures in 
the time and frequency domains; however, these methods are 
not sufficient to characterise the complex dynamics of the 
heart rate time series, which are characterised by nonstation-
arity and nonlinearity. Therefore appropriate HRV analysis 
methods for describing the nonlinear properties of the com-
plex dynamics arising from cardiovascular control are re-
quired. Among these nonlinear measures are multiscale en-
tropy features, such as Rényi entropy (RE) and permutation 
entropy (PE) [4], which provide information on the degree of 
regularity inherent in a time series.  

RE considers the probability of a sequence of values to 
occur in the HRV data, whereas PE describes the probability 
of ordinal patterns occurring within the time series. There-
fore, these entropy measures may add complementary infor-
mation when used in combination. Furthermore, both fea-
tures are promising for CAN assessment [5, 6]. In previous 
work we have shown that RE has superior discriminatory 
power to multiscale sample entropy and multi-fractal 
detrended fluctuation analysis for CAN detection [7]. In the 
present study we aim at comparing the performance of RE to 
PE for the identification of CAN in type 1 diabetes. 

II. MATERIALS AND METHODS 

A. Subjects 

The study involved 24 healthy volunteers, 18 type 1 dia-
betes mellitus (T1DM) patients without CAN and 14 T1DM 
patients with CAN (table 1). Patients and controls were 
matched for age and sex. All participants provided informed 
consent. The study protocol followed the principles outlined 
in the Declaration of Helsinki and was approved by the Ethics 
Committee of the National Institute of Endocrinology, Cuba. 
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Table 1. Demographic and clinical data. Values are expressed as mean ± 
standard deviation, number of cases (n) or percentages. T1DM: type 1 dia-
betes mellitus patients; T1DM-C: control group of T1DM; DCAN: type 1 
diabetes mellitus patients with cardiac autonomic neuropathy; DCAN-C: 
control group of DCAN; F: female; M: male; BMI: body mass index; DD: 
disease duration; HbA1c: glycosylated hemoglobin.    
Indices T1DM T1DM-C DCAN DCAN-C 
F/M (n) 12/6 12/6 7/7 7/7 
Age (yrs) 29.61  8.79 29.67  8.24 36.57  9.13 36.21  8.58 
BMI (Kg/m2) 24.59  2.90 23.44  2.53 24.99  3.80 23.73  2.45 
DD (yrs) 15.35  10.36 - 23.43  12.70 - 
HbA1c (%) 7.15  1.90 - 7.95  1.28 - 

B. ECG recordings and RR intervals 

The study was conducted between 9:00 am and 12:00 
noon in a quiet environment with room temperature ranging 
between 23–26 °C. Five minute CM5-V5-lead ECG was rec-
orded at rest and in a seated position under standard condi-
tions, using a Hewlett Packard 78354A electrocardiograph 
unit and a NI USB-6008 Data Acquisition device (sampling 
rate was 1 kHz) after 15 min of acclimatization. The ECG 
and the R waves were visually inspected using the VFC32 
software1 to ensure a sinusoidal rhythm. Tachograms2 were 
examined and RR data were filtered as described in [8].  

C. HRV analysis 

Rényi entropy: RE 𝐻(𝜆, 𝛼) is a generalization of Shannon 
entropy to include measures of different orders:  

 𝐻(𝜆, 𝛼) =  
1

1 − 𝛼
𝑙𝑜𝑔2 (∑ 𝑝𝑖
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𝑛
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where  𝑝𝑖  is the probability of each sequence of RR intervals 
of length 𝜆 and the exponent 𝛼 is the order of the entropy 
measure. This is the parameter that is varied to produce a 
multiscale entropy. The probability of a sequence of RR in-
tervals was estimated by measuring the similarity of the sam-
ple 𝑖 with all other samples of the same length 𝜆 in the whole 
sequence. Each sequence was regarded as a point in a 𝜆-di-
mensional space, and its probability was estimated using a 
Gaussian kernel centred on each such point. Then 𝑝𝑖  is given 
by the density function:  

 𝑝𝑖 = ∑ 𝑒𝑥𝑝 (
−𝑑𝑖𝑠𝑡𝑖𝑗
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1 Machado A and M. Estévez (2008), University of Havana 
2 Plot of the duration of RR intervals versus the order of progressive beats 

where 𝜎 is the Gaussian dispersion or tolerance and 𝑑𝑖𝑠𝑡 is 
the Euclidean distance between sample 𝑖 and all other sam-
ples 𝑗, in 𝜆-dimensions: 

 𝑑𝑖𝑠𝑡𝑖𝑗 = ∑(𝑥𝑖+𝑘 − 𝑥𝑗+𝑘)
2

𝜆

𝑘=0

 (3) 

Here, 𝑥𝑖+𝑘 is one RR sample out of sequence of length 𝜆, the 
pattern length over which comparison occurs. The density 
method for estimating probabilities is superior in terms of 
providing a measure that can discriminate different classes of 
CAN [9, 10]. The multiscale RE was calculated from 235 
data points of cardiac interbeat interval (RR) sequences for 𝛼 
= {-5, 5}, 𝜆  = {2, 4, 8}, and different values of 𝜎 =
{0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01}. 

Permutation entropy: PE is based on the representation of 
time series in a symbolic phase space. Given any discrete 
time series 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛} of length  𝑛 , partitions 
are taken for each time 𝑡 as 𝜆-dimensional vectors (𝜆 ≥ 2) 
of values of 𝑋. These realizations of 𝑋 were then separated 
into (𝜏 ≥ 1)  units, viz.:  𝑡 →

(𝑥𝑡 , 𝑥𝑡+𝜏, … , 𝑥𝑡+𝜏(𝜆−2), 𝑥𝑡+𝜏(𝜆−1)).  
A symbolic sequence is then built by mapping these vec-

tors to ordinal patterns. Values in partition vectors were ar-
ranged in increasing order and a permutation vector (or mo-
tif) 𝜋  of their indexes with respect to (0, 1, … , 𝜆 − 1) was 
obtained. Parameters 𝜆 and 𝜏 are the embedding dimension 
and time delay, respectively. In this work, we computed PE 
from 5-minute RR sequences for 𝜆 = {3, 4}  and  𝜏 =
(1, … , 10).  

Normalized PE is defined as the Shannon entropy asso-
ciated to the distribution of the frequencies of appearance of 
each pattern 𝑖  in the series,  
𝑃(𝜆, 𝜏, 𝑖) -in probabilistic terms: 

 𝑃𝐸(𝜆, 𝜏) =  −
1

𝑙𝑜𝑔2𝜋!
∑ 𝑃(𝜆, 𝜏, 𝑖)𝑙𝑜𝑔2[𝑃(𝜆, 𝜏, 𝑖)]

𝜋!

𝑖=1

 (4) 

Possible motifs for our signals are shown in table 2, as well 
as the permutation indexes used to identify them [11]. 

D. Statistical analysis 

Statistical analysis was performed using STATISTICA 
(StatSoft, Inc.). Normality was assessed by the Kolmogorov-
Smirnov test. Comparative analyses were performed using 
the Mann-Whitney U- or t-tests and correlations assessed by 
Spearman R coefficients. A forward stepwise discriminant 
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analysis was carried out for estimating classification func-
tions and separate cases. Accuracy was estimated following 
a K-fold cross-validation testing strategy (k = 14). P values < 
0.05 were considered as significant and adjusted for multiple 
comparisons. 

Table 2 Permutation indexes 𝑖 and motifs 𝜋 of length 𝜆 = 3 and 𝜆 = 4 

𝜆 =  3 𝜆 =  4 
𝑖 𝜋 𝑖 𝜋 𝑖 𝜋 𝑖 𝜋 𝑖 𝜋 
1 012 1 0123 7 1023 13 2013 19 3012 
2 021 2 0132 8 1032 14 2031 20 3021 
3 102 3 0213 9 1203 15 2103 21 3102 
4 120 4 0231 10 1230 16 2130 22 3120 
5 201 5 0312 11 1302 17 2301 23 3201 
6 210 6 0321 12 1320 18 2310 24 3210 

III. RESULTS 

There was no significant difference in RE or PE between 
T1DM patients without CAN and healthy individuals. RE 
showed significant differences between diabetes patients 
with CAN compared to healthy controls for samples of se-
quence length 𝜆 =  2 only, regardless of σ values (table 3). 
The best results were achieved with 𝛼 =  5 (Mann-Whitney 
U test 𝑝 <  0.00002). 

PE measures showed significantly lower values in the 
DCAN group for 𝑃𝐸(3,4) , 𝑃𝐸(3,5) 𝑃𝐸(3,7) ,  𝑃𝐸(4,4) , 
𝑃𝐸(4,5) and 𝑃𝐸(4,7) compared to controls (Mann-Whitney 
U test 𝑝 <  0.008) (table 3). Probabilities of ordinal patterns 
𝑃(𝜆, 𝜏, 𝑖) computed from these (𝜆, 𝜏) values were analysed, 
with best significant results obtained  for 𝑃(3,4,4),  𝑃(3,4,6), 
 𝑃(3,5,6) ,  𝑃(4,4,24) , 𝑃(4,5,22)  and 𝑃(4,5,24)  between 
DCAN group and controls (t-test 𝑝 <  0.0004) (table 3). 

RE measures with 𝜆 =  2 showed moderate correlation 
with  𝑃𝐸(3,4)  ( 𝑅 =  0.55 ),  𝑃𝐸(3,5)  ( 𝑅 =  0.60 ) and 
𝑃(3,4,6) (𝑅 =  0.66) in the control group. In the DCAN 
group, RE measures correlated with 𝑃𝐸(4,5) (𝛼 = −5: 𝑅 =
 0.56), 𝑃(3,5,6) (𝛼 = −5: 𝑅 =  0.63; 𝛼 = 5: 𝑅 =  0.68), 
and 𝑃(4,5,24) (𝛼 = −5: 𝑅 =  0.64; 𝛼 = 5: 𝑅 =  0.55). 

Among the three discriminant models computed from 
RE 𝐻(2,5) with 𝜎 =  0.01, PE measures, and ordinal pat-
tern statistics, the best accuracy was accomplished for the 
model including probabilities of ordinal patterns (table 4). 
However, a 100% classification accuracy was achieved by 
combining RE and ordinal pattern statistics. 

Table 3. Rényi entropy (RE), permutation entropy (PE) and ordinal patterns 
(OP) data. Only descriptive statistics of significant features for the identifi-
cation of diabetic cardiac autonomic neuropathy (DCAN) are shown. Values 
are presented as median ± interquartile range for RE and PE, and as mean ± 

standard deviation for OP. The numbers in brackets after: RE 𝐻, indicate the 
values of parameters (𝜆, 𝛼), where 𝜆 is the sequence length and 𝛼 is the ex-
ponent; 𝑃𝐸, indicate the values of parameters (𝜆, 𝜏), where 𝜏 is the time de-
lay; probabilities of OP 𝑃, indicate the values of parameters (𝜆, 𝜏, 𝑖), where 
𝑖 is the permutation index. Statistic: Z-value for RE and PE, and t-value for 
OP.    

Feature DCAN Control Statistic p-value 
H(2,-5) 1.018 ± 0.021 1.001 ± 0.002 4.18124 0.000029 
H(2,5) 0.936 ± 0.044 0.984 ± 0.016 -4.27313 0.000019 
PE(3,4) 0.971 ± 0.015 0.988 ± 0.015 2.94065 0.003275 
PE(3,5) 0.979 ± 0.018 0.994 ± 0.008 3.40013 0.000674 
PE(3,7) 0.989 ± 0.014 0.996 ± 0.006 3.53797 0.000403 
PE(4,4) 0.950 ± 0.021 0.972 ± 0.025 2.66497 0.007700 
PE(4,5) 0.963 ± 0.031 0.981 ± 0.012 2.98660 0.002821 
PE(4,7) 0.977 ± 0.018 0.984 ± 0.011 2.75686 0.005836 
P(3,4,4) 0.122 ± 0.014 0.148 ± 0.017 4.41163 0.000159 
P(3,4,6) 0.267 ± 0.022 0.213 ± 0.043 -4.21300 0.000268 
P(3,5,6) 0.253 ± 0.044 0.185 ± 0.042 -4.19553 0.000280 
P(4,4,24) 0.105 ± 0.027 0.062 ± 0.027 -4.12352 0.000339 
P(4,5,22) 0.035 ± 0.007 0.050 ± 0.011 4.46966 0.000136 
P(4,5,24) 0.108 ± 0.042 0.054 ± 0.023 -4.28317 0.000223 

Table 4. Classification accuracy of discriminant models based on Rényi en-
tropy (RE), permutation entropy (PE) or probabilities of ordinal patterns 
(OP) for cardiac autonomic neuropathy identification. OP, RE represents a 
procedure combining the discriminant power of RE and OP. 

Feature Sensitivity Specificity Accuracy F p-value 
RE 71% 93% 82% 49.192 0.000000 
PE 57% 93% 75% 8.2008 0.000625 
OP 93% 100% 96% 12.599 0.000014 
OP, RE 100% 100% 100% - - 

IV. DISCUSION 

In this work, we compared two approaches that yield mul-
tiscale entropy measures, and evaluated their potential for the 
identification of CAN in type 1 diabetes patients.  

Results regarding a better performance of RE with posi-
tive values of 𝛼 in the identification of CAN are consistent 
with our prior work [9, 10]. However, our previous findings 
supported that greater sequence length (𝜆 ≥  8) improves RE 
performance for CAN assessment in type 2 diabetes rather 
than the current short sequence length [10]. Shorter sequence 
lengths better reflect cardiac vagal modulation rather than a 
sympathetic effect. Since ECGs were recorded in a supine 
position, a predominance of vagal activity is expected regard-
less of sequence length. Longer sequences for analysis in-
clude more of a sympathetic component and may better re-
flect impairment of sympatho-vagal tone.  

Further research is required to reveal whether this differ-
ence in RE performance according to pattern length might be 
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suggesting clinical-pathologic dissimilarities between car-
diac dysautonomia occurring in type 1 and type 2 diabetes 
mellitus.  

We did not find significant differences between T1DM pa-
tients without CAN and controls for any of the HRV features 
analysed. The lack of a significant difference might reflect a 
still emergent cardiac autonomic dysfunction that does not 
affect substantially HRV dynamics due to a moderate disease 
duration in our cohort (15.35  10.36 yrs), in addition to good 
diabetes management. 

In previous work, we found that 𝑃𝐸(3,4) was correlated 
to the standard deviation (SD) and other measures of overall 
HRV, whereas 𝑃𝐸(3,5) and 𝑃𝐸(4,5) provided information 
on the sympatho-vagal balance in the healthy system [6]. 
However, these and other correlations were rather weak, sup-
porting that PE provides additional information to that ob-
tained using standard methods of HRV analysis. RE has also 
been shown to add new information when computed for neg-
ative values of 𝛼 [10]. Since length of recording has an im-
portant impact on CAN classification [12], further research 
should aim at comparing the optimal data length of these al-
gorithms for the identification of CAN. 

RE performed at a higher accuracy in the identification of 
patients with CAN as compared to PE or probabilities of or-
dinal patterns 𝑃, although a combination of 𝑃  reached the 
highest level of accuracy. Importantly, since RE and ordinal 
pattern statistics provide complementary information, the 
classification of cases based on these measures achieved an 
accuracy of 100%. Thus, a multidimensional space combin-
ing nonredundant HRV features holds promise in providing 
a sensitive and specific tool for CAN diagnosis.  

V. CONCLUSIONS 

RE performed at a higher accuracy in the identification of 
CAN as compared to PE. The combination of RE and ordinal 
pattern statistics reached the highest level of accuracy. This 
approach might be promising as a sensitive and specific tool 
for CAN diagnosis in T1DM. Additional research on a larger 
sample size is required to further elucidate the effectiveness 
of the proposed procedure for CAN detection. 
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